JAPANESE TOP Message from the Director Information Faculty list Research Projects International Conference Entrance Exam Visitors Publication Job Vacancy International Partnerships Links Access HANDBOOK FOR INTERNATIONAL RESEARCHERS Map of Inuyama
BONOBO Chimpanzee "Ai" Crania photos Itani Jun'ichiro archives Guidelines for Care and Use of Nonhuman Primates(pdf) Study material catalogue/database Guideline for field research of non-human primates Primate Genome DB

Primate Research Institute, Kyoto University
Inuyama, Aichi 484-8506, JAPAN
TEL. +81-568-63-0567
(Administrative Office)
FAX. +81-568-63-0085

Copyright (c)
Primate Research Institute,
Kyoto University All rights reserved.



Excretion patterns of solute and different-sized particle passage markers in foregut-fermenting proboscis monkey (Nasalis larvatus) do not indicate an adaptation for rumination

Ikki Matsuda, John C.M. Sha, Sylvia Ortmannc, Angela Schwarmd, Florian Grandld, Judith Catone, Warner Jensf, Michael Kreuzerd, Diana Marlenab, Katharina B. Hageng, Marcus Clauss

Behavioral observations and small fecal particles compared to other primates indicate that free-ranging proboscis monkeys (Nasalis larvatus) have a strategy of facultative merycism (rumination). In functional ruminants (ruminant and camelids), rumination is facilitated by a particle sorting mechanism in the forestomach that selectively retains larger particles and subjects them to repeated mastication. Using a set of a solute and three particle markers of different sizes (< 2, 5 and 8 mm), we displayed digesta passage kinetics and measured mean retention times (MRTs) in four captive proboscis monkeys (6–18 kg) and compared the marker excretion patterns to those in domestic cattle. In addition, we evaluated various methods of calculating and displaying passage characteristics. The mean ± SD dry matter intake was 98 ± 22 g kg-0.75 d-1, 68 ± 7% of which was browse. Accounting for sampling intervals in MRT calculation yielded results that were not affected by the sampling frequency. Displaying marker excretion patterns using fecal marker concentrations (rather than amounts) facilitated comparisons with reactor theory outputs and indicated that both proboscis and cattle digestive tracts represent a series of very few tank reactors. However, the separation of the solute and particle marker and the different-sized particle markers, evident in cattle, did not occur in proboscis monkeys, in which all markers moved together, at MRTs of approximately 40 h. The results indicate that the digestive physiology of proboscis monkeys does not show typical characteristics of ruminants, which may explain why merycism is only a facultative strategy in this species. 


Physiology & Behavior


Copyright(C) 2015 PRI ().